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e (G, o) — group with a topology
o:G x G — @ is separately continuous
Vge G: (g,x)—gox
(z,g) — x o g are continuous
STopGr — the category of all semitopological groups and
continuous homomorphisms

all maps are continuous homomorphisms

every subcategory of STopGr is full — subcategories are
determined by their classes of objects

every subcategory of STopGr is isomorphism-closed
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o A C STopGr is reflective in STopGr:

VG € STopGr JH € A, r: G — H :
VH' €e AVf:G— H' 3\f: H— H’, such that the following
diagram commutes:

G
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f f
H/

o epireflective: every reflection is an epimorphism

o extremal epireflective: every reflection is an extremal
epimorphism (quotient map)
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e quasitopological groups (QTopGr)
e paratopological groups (PTopGr)
o topological groups (TopGr)
o extremal epireflective < closed under the formation of products,
subgroups and semitopological groups with finer topologies
o abelian semitopological groups (STopAb)
e torsion-free semitopological groups
e Hausdorff semitopological groups
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Coreflective subcategories

e B C A is coreflective in A:

VGeAdHeB, c:H—G:
VH e BYf:H — G 3! f: H — H, such that the following
diagram commutes:

H

G

/ f
H/

e monocoreflective: every coreflection is a monomorphism

@ bicoreflective: every coreflection is a bimorphism
(monomorphism and epimorphism)
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e monocoreflective < closed under the formation of coproducts
and extremal quotients

e extremal quotient: G LGy D Gy

e coproduct: the most general group from A that is generated by
the given groups

@ hereditary: closed under the formation of subgroups
o hereditary coreflective = monocoreflective

e coreflective, contains r(Z) = bicoreflective
e.g. QTopGr in STopGr, TopGr in PTopGr
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that are not bicoreflective in A?

e What is the group r(Z)?
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o STopGr, QTopGr:
every hereditary coreflective subcategory of A that contains a
non-indiscrete group is bicoreflective in A
hereditary coreflective, not bicoreflective:
e only the trivial group
o all indiscrete groups
o A: extremal epireflective in STopGr, A C STopAb
B: such groups G from A that no infinite cyclic subgroup of G is
T
B is the largest hereditary coreflective subcategory of A that is
not bicoreflective in A
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Thank you for your attention.
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